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Abstract
The random shuffle update method for the asymmetric exclusion process
(ASEP) is introduced, and the dynamical pair technique is extended in order
to analyse its dynamics. A sequence of approximate models is introduced,
the first element of which corresponds to the classical parallel update rule
whose pair dynamics is reviewed. It is then shown how the argument may be
extended inductively to solve for the two-cell configuration probabilities for
each element of the sequence of approximate models. A formal limit is then
taken, and macroscopic velocities and flow rates are derived.

PACS numbers: 89.40.−a, 02.50.−r

1. Introduction

The general context of this paper is the modelling of unidirectional road traffic or pedestrian
flow with one-dimensional cellular automata of Nagel–Schreckenberg type [1], with the
maximum velocity parameter vmax set equal to 1. This type of model is sometimes referred
to as the asymmetric exclusion process (ASEP) [2, 3]. In this well-known set-up, space is
discretized into a one-dimensional array of cells each of which is either empty or occupied by
exactly one agent, and each agent moves according to a pair of very simple microscopic rules:

(i) if the cell immediately downstream is occupied, remain stationary (R1), and
(ii) if the cell downstream is unoccupied, move forward into it with probability p, 0 < p � 1.

(R2)

The only remaining subtlety (and the subject of this paper) concerns the precise order in
which rules (R1) and (R2) are applied.

At each time step in the parallel update scheme [1, 4], rules (R1) and (R2) are applied
simultaneously to all agents. No conflict resolution is necessary, since rule (R1) automatically
prevents multiple occupancy.
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In contrast, at each time step of the random sequential update scheme [5, 6], rules (R1)
and (R2) are applied to a single agent chosen at random. For simulation purposes, the most
attractive feature of the random sequential update is that single-occupancy is automatically
preserved by (R1), and this would hold even in multi-dimensional situations, where the parallel
update scheme would need a conflict resolution algorithm. However, a disadvantage of random
sequential update is that with small probability, a single agent might receive a large number
of consecutive turns, and thus, in low density situations, achieve an unphysical velocity.

This paper however is concerned with the dynamics of rules (R1) and (R2) under the
shuffle update scheme, which has received very little attention in the literature to date [7–10].
At each time step in this scheme, rules (R1) and (R2) are applied to each individual agent in
turn, according to a random order generated at the beginning of the time step, which contains
each agent exactly once. After all agents have applied rules (R1) and (R2), a new random
order is generated and the next time step begins. Consequently, the scheme is stochastic even
when p = 1, because of the random turn-taking order.

The shuffle update is similar to the random sequential scheme in that the occupancy of cells
is updated incrementally as each agent applies its rules and consequently, it does not require
conflict resolution to preserve single-occupancy (even in multi-dimensional extensions).
However, the shuffle update enjoys the modelling advantage that the velocities of individual
agents are bounded.

The chief result of this paper is an extension of the dynamical pair analysis of
Schreckenberg et al [11], which analyses (R1) and (R2) under the parallel update scheme, to
the more complicated case of the shuffle update. The argument here is more involved than [11]
because under the shuffle update, it is possible for large blocks of contiguous agents to move
forward in a single time step, if their turns are served in upstream order. Consequently,
we analyse a sequence of approximate processes defined as follows and illustrated in
figure 1.

Definition. By the truncated process of order n, we mean that rules (R1) and (R2) are applied
under the shuffle update scheme, with the proviso that the opportunity to move is offered only
to agents who are in the first n positions of a contiguous block at the beginning of the time
step.

Note that the truncated process of order 1 is identical to the parallel update scheme.
However, the limit of interest is that of truncated processes of order n → ∞, under which one
converges to the dynamics of the (full, untruncated) shuffle update scheme.

The remainder of the paper is laid out as follows. In section 2, we describe dynamical
pair analysis, and we solve for the statistically stationary two-cell configuration probability for
the two coarsest approximate schemes n = 1, 2. Sections 3 and 4 then extend the argument
inductively, to solve for the two-cell configuration probability in a sequence of truncated
models which approximate the full scheme as close as we like. A formal limit is taken,
then section 5 derives quantities such as the distribution of block lengths, average velocity
and average flow, as a function of the system density. Throughout we assume (i) that the
system has reached statistical stationarity, (ii) that it is large, and (iii) that periodic boundary
conditions are in force so that agents leaving the right-hand end of the system re-join on the
left, so that the total number of agents, and therefore the density, is conserved.

Note that the analysis presented here is approximate, since the dynamical pair analysis is
based on a spatial independence approximation: namely that the configuration probabilities
for three- and four-cell clusters and so on factorize into products of conditional two-cell
configuration probabilities. This limitation and possible extensions to the theory are discussed
further in section 6.
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Figure 1. One time step of the truncated process with n = 2, p = 1 and (randomly generated)
turn-taking order 7, 1, 5, 2, 3, 4, 6. The sequence of moves is as follows: (a) agent 7 is blocked;
(b) agent 1 moves; (c) agent 5 moves; (d) agent 2 moves; (e) agent 3 does not move because
of the truncation (position 3 of its block at time t∗); (f ) agent 4 is blocked; (g) agent 6 moves.
Note that only the front two agents of block 1–4 move whereas in the full shuffle process they
would all move.

2. Two-cell cluster analysis

In order to compute distributions of block sizes and hence mean velocities and flow
rates, we generalize the dynamical pair analysis of Schreckenberg et al [11]. The idea
is to compute the so-called two-cell configuration probabilities P2 for the possible states
(1, 0), (0, 1), (1, 1) and (0, 0) of two adjacent cells, where 0 and 1 denote empty and occupied
respectively. It may be shown that the two-cell configuration probabilities are related by
P2(1, 0) = P2(0, 1), (=: y), P2(1, 1) = c − y, and P2(0, 0) = 1 − c − y, where c denotes the
prescribed mean density, i.e., the probability that a single cell is occupied. Consequently, we
need only to find y.

2.1. Truncated process with n = 1

To simplify matters, we begin by reviewing the n = 1 truncated process, which is identical
to the parallel update scheme [1]. The key step is to consider a window of cells surrounding
a pair whose time evolution is monitored and to catalogue all moves which result in that pair
becoming (1, 0): see figure 2. Here we label the cells 0, 1, 2, 3 in downstream order, and we
denote their contents by τ0, τ1, τ2, τ3 at the backward time step t = t∗ −1 and by σ0, σ1, σ2, σ3

at t = t∗. Note that if a cell’s occupancy is denoted by ?, then all moves carry through with
the same transition probabilities irrespective of whether that cell is occupied or not.

The first task is to use the rules of the cellular automata to compute the transition
probabilities W for each of the left-hand to right-hand column moves listed in figure 2.
Take for example F

(1)
1 , which gives the desired right-hand state if the occupant of cell 1 does

not move; thus W
(
F

(1)
1

) = 1 −p from rule (R2). Alternatively, consider G
(1),1
2 . The agents in

cells 0 and 2 must both move (each with probability p), so W
(
G

(1),1
2

) = p2. Other calculations
are similar.
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Figure 2. The list of all possible transitions to a (σ1, σ2) = (1, 0) two-cell cluster (highlighted in
bold) at time step t∗, for the n = 1 truncated process. Configuration probabilities for the left-hand
column states are denoted by P, and transition probabilities by W . Cells marked with a ? symbol
can be occupied or empty, with no effect on either P or W .

The second task is to approximate the stationary probability of each left-hand column state
in terms of the two-cell configuration probability y and the mean density c. To achieve this, we
use the conditional two-cell cluster probabilities P2(1, 1) = P2(1, 1) = 1 − y/c, P2(0, 0) =
P2(0, 0) = 1 − y/(1 − c), P2(1, 0) = P2(0, 1) = y/c, and P2(0, 1) = P2(1, 0) = y/(1 − c).
Here we have adopted the notation of [11], so that e.g., P2(1, 0) denotes the probability of a
cell being unoccupied if its left-hand neighbour is occupied. We then apply local structure
theory [12] to approximate the probabilities of larger clusters in terms of smaller ones. For
example

P
(
G

(1),1
2

) = P(τ0 = 1, τ1 = 0, τ2 = 1, τ3 = 0), =: P4(1, 0, 1, 0),

� P2(1, 0)P2(0, 1)P2(1, 0),

= y3

c(1 − c)
. (1)

The remaining state probabilities are approximated similarly. In what follows we suppose that
the above factorization is exact, and we subsequently drop the � symbol.

We may now write down the probability y = P2(1, 0) in terms of the sum product of the
probabilities of left-hand column states and their corresponding transition probabilities. We
have

y :=
∑
i=1,2

(
W

(
F

(1)
i

)
P

(
F

(1)
i

)
+ W

(
G

(1),1
i

)
P

(
G

(1),1
i

))
, (2)

which on substitution of the quantities listed in figure 2 yields(
p2

c(1 − c)

)
y2 −

(
p

c(1 − c)

)
y + p = 0. (3)

This quadratic has one valid root between 0 and 1 given by

y = 1

2p

(
1 −

√
1 − 4pc(1 − c)

)
, (4)

see [11].

2.2. Truncated process with n = 2

We now deal with the n = 2 truncated process. Figure 3 lists five wide windows at t = t∗ − 1
which give rise to (σ1, σ2) = (1, 0) at t = t∗. There are six such states to consider, labelled
F

(2)
1,2 and G

(2),1,2
1,2 . Here the parenthesized superscript denotes the order n of the truncated

process, and the subscripts and letters F and G describe a hereditary relation with the states
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Figure 3. The list of all possible transitions to a (1, 0) two-cell cluster at time step t∗ for the n = 2
truncated process, c.f. figure 2. P and W denote respectively configuration probabilities for the
left-hand column states and transition probabilities.

for n = 1. Note that the G states also have a second superscript whose meaning we explain
shortly. In some sense, we may think of the n = 2 states as descendants of those for n = 1,
and the crux is to understand how the ‘propagation’ works.

Firstly, note that the propagation of the F family of states is trivial. To see this, note that
state F

(1)
1 has (τ1, τ2) = (1, 0): consequently, it produces (σ1, σ2) = (1, 0) via the occupant

of cell 1 not moving. Likewise, state F
(1)
2 has (τ0, τ1, τ2) = (1, 0, 0): so we require only the

agent in cell 0 to move forward. Since the occupant of cell 0 is either an isolated agent, or
the head of a block, the nature and probability of this transition is unaffected by the order n
of the truncated process.

The difference between the n = 1 and n = 2 cases concerns the G family of states. Each
of these has τ2 = 1, and hence requires the occupant of cell 2 to move to produce σ2 = 0.
In the n = 1 case, this can only happen if the occupant of cell 2 is either the head of a block
(case G

(1),1
1 ) or isolated (case G

(1),1
2 ). When n = 2, there are more exotic possibilities. For

example, we could have (τ2, τ3) = (1, 1), and provided the occupant of cell 3 is the head
of its block, it is possible for both the occupants of cells 2 and 3 to move, leaving σ2 = 0.
To determine whether the occupant of cell 3 is the head of its block, it is thus necessary to
consider the occupancy of the next cell downstream, and this is why we must now consider
five wide windows of cells.

Next we must compute the transition probabilities W : results are summarized in figure 3.
The details are more complicated than for n = 1, since now the second agent in a block may
move, provided the block leader also moves and provided its turn is served after the block
leader (the latter occurring with probability 1/2). Consequently, the different actions of the
second agent have probabilities consisting of factors of 1/2, p and (1 − p).

For states F
(2)
i , we have W

(
F

(2)
i

) = W
(
F

(1)
i

)
because there is no second agent in a

block to come in to play. We also have W
(
G

(2),1
2

) = W
(
G

(1),1
2

)
since there are no blocks

of length greater than 1. However, the transition probabilities for other G
(2),m
i states change.

For G
(2),1
1 , we have the first agent in the block moving but not the second: this can occur

either (i) because the turn-taking order suffices but the second agent chooses not to move, or
(ii) because the second agent is served before the first and hence is unable to move; thus we
obtain W

(
G

(2),1
1

) = p(1 − p)/2 + p/2,= p − p2/2. The transition probabilities for the

G
(2),2
i states are related to those for G

(1),1
i by W

(
G

(2),2
i

) = (p/2)W
(
G

(1),1
i

)
, with the factor

p/2 describing the probability that the second agent of a block is served after the first and it
chooses to move.
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Figure 4. The propagation of F
(n)
i states for increasing n, cf the left-hand column states in

figures 2 and 3. The added right-hand cell in each window may be either occupied or empty with
no effect on the transition to (σ1, σ2) = (1, 0).

We now find how the state probabilities relate to those for n = 1 (see figures 2, 3). Here
we consider five wide cell windows, since we need to consider vmax = 1 cells upstream, and
n cells downstream of our monitored two-cell cluster. The top four states in the left-hand
column of figure 3 can be easily identified with the n = 1 states (figure 2), since the fifth cell
takes the ? state, contributing a factor of 1 to the probability. So we have P

(
F

(2)
i

) = P
(
F

(1)
i

)
and P

(
G

(2),1
i

) = P
(
G

(1),1
i

)
. We then relate the remaining two n = 2 states G

(2),2
i to the n = 1

states G
(1),1
i , by inserting an occupied cell in the fifth position, giving a contribution to the

probability of P2(1, 1) = (1 − y/c). So we have P
(
G

(2),2
i

) = (1 − y/c)P
(
G

(1),1
i

)
.

Analogous to (2) we may write

y =
∑

i

W
(
F

(2)
i

)
P

(
F

(2)
i

)
+

∑
m�2

∑
i

W
(
G

(2),m
i

)
P

(
G

(2),m
i

)
, (5)

which on substitution and simplification yields f2(y; c, p) = 0, where

f2(y; c, p) = p − y

(
p

c(1 − c)
+

p2

2c

)
+ y2

(
p2

c(1 − c)
+

p2

2c2
+

p3

2c(1 − c)

)

− y3

(
p3

2c2(1 − c)

)
, (6)

which we need to solve for y between 0 and 1.

3. Inductive construction for truncated processes

We now consider how to build the pair-dynamics argument inductively to analyse the truncated
process for any finite order n. At each level, we will consider a catalogue of 2n + 2 states each
of which is n + 3 cells wide, and this will lead to a polynomial in y of degree n + 1. The key
to this argument is to understand how the F

(n)
i and G

(n),m
i states ‘breed’ as n is increased.

As was seen for the n = 1, 2 cases, the states denoted by F
(n)
i propagate unaltered as n

increases (see figure 4). The cell window widens by one cell (on the right) at each step in n,
and this cell may take either τn+2 = 0 or 1, with no effect on the calculations: this effect is
indicated on the figures by ?. We thus have P

(
F

(n)
i

) = P
(
F

(1)
i

)
for all n. Similarly, we find

W
(
F

(n)
i

) = W
(
F

(1)
i

)
for all n because we need never consider the motion of more than one

agent. In the F
(n)
i states, we require that the front agent of a block does not move, so that

all other motion is blocked and does not depend on the order n. Agents downstream have no
effect on the monitored (σ1, σ2) two-cell cluster. In the F

(n)
2 states, the only motion is the front

agent of a block moving into σ1, and it does not matter how many agents move behind this
one, as they do not enter the monitored (σ1, σ2) two-cell cluster. Again, agents downstream
have no effect on the monitored (σ1, σ2) two-cell cluster.

The G
(n),m
i states are more interesting in their propagation in n. They breed new states as

well as propagating themselves (see figure 5). We define those states which, in figure 5, have
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Figure 6. State P and transition W probabilities for G
(n),m
i states. P is unaltered along propagating

(horizontal) arrows, but gains a factor P2(1, 1) = 1 − y/c on the breeding (diagonal) arrows.
Transition probabilities gain a factor of p/n on diagonal arrows, while on horizontal arrows
W(G

(n),n−1
1 ) = W(G

(n−1),n−1
1 )(1 − p/n) with other quantities unchanged.

arrows linking the n state to two n + 1 states as ‘breeding’ states, while those with only one
(horizontal) linking arrow we denote ‘dormant’ states. For clarity, we refer to extension along
the horizontal arrows as propagation, and extension along the diagonal arrows as breeding.
We now define the properties that make up these breeding and dormant states, before going
on to discuss how their transition probabilities W to the monitored (1, 0) two-cell cluster, and
their window state probabilities P, change with increasing n.

To explain the inductive process, we use figures 5 and 6. In the G
(n),m
i notation, the n,m

specify the horizontal and vertical coordinates of the corresponding pair of G states measured
from the top-left-hand corner. The superscript m also gives the number of agents which are
required to move from a single block in the corresponding window states. For instance,
for G

(3),2
1 to have (σ1, σ2) = (1, 0) at the next time step, two agents must move from the block,

and the third must remain stationary.
Breeding states are those labelled G

(n),n
i , and are characterized by having τ2, . . . , τn+2 = 1

(indicated on figure 5 by the dashed outlines). Thus n agents are required to move from a
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block in order that σ2 = 0 at t = t∗. We say that these states ‘breed’ because G
(n),n
i can be

related to both G
(n+1),n
i and G

(n+1),n+1
i . By examining figure 5, we see that the G

(n+1),n
i state is

obtained along a horizontal arrow by the window state growing in the manner of the F states,
with an added right-hand ?. The G

(n+1),n+1
i state manifests itself by a diagonal arrow, with the

block length growing accordingly.
These breeding states account for all changes in probabilities W and P as n increases,

see figure 6. We see that along the diagonal arrows, state probabilities P gain a factor of
P2(1, 1) = 1 − y/c, from the increased length of the block, while transition probabilities
W gain a factor of p/n from the extra agent that is being required to move. On
the horizontal lines from breeding states, we see that the window state probabilities are
unchanged, while the transition probabilities only alter for the G

(n),m
1 states. Here we have

W
(
G

(n),m
1

) = W
(
G

(n−1),m
1

) − (p/n)W
(
G

(n−1),m
1

)
, which can be interpreted as Prob (n − 1

agents move)− Prob (n agents move). We have this relation because with the increase in n, it
becomes necessary to specify that the last agent in the block does not move.

States labelled G
(n),m
i with n �= m are ‘dormant’ and propagate unaltered in the same

manner as the F
(n)
i states. Transition probabilities do not change, as the number of agents

required to move is already less than n and so is independent of n as it increases.
We can then summarize the probabilities shown in figure 6 inductively. For the state

probabilities, we have P
(
G

(n),m
i

) = P
(
G

(n−1),m
i

)
and P

(
G

(n),m
i

) = (1 − y/c)P
(
G

(n−1),m−1
i

)
,

and for the transition probabilities, we have W
(
G

(n),m
i

) = (p/n)W
(
G

(n−1),m−1
i

)
; then

(i) for m < n,W
(
G

(n),m
i

) = W
(
G

(n−1),m
i

)
; and (ii) for m = n,W

(
G

(n),m
1

) = W
(
G

(n−1),m
1

) −
(p/n)W

(
G

(n−1),m
1

)
and W

(
G

(n),m
2

) = W
(
G

(n−1),m
2

)
.

4. General solution for the two-cell configuration probability

We have now identified the structure and trend of all the terms required to construct the
equation fn(y; c, p) = 0 (to solve for y) for any truncation order n. The construction begins
with

y =
∑

i

P
(
F

(1)
i

)
W

(
F

(1)
i

)
+

∑
i,m

P
(
G

(n),m
i

)
W

(
G

(n),m
i

)
. (7)

As n is increased some terms, corresponding to the F
(n)
i states, remain the same. Further new

terms appear, and accumulate, corresponding to the breeding and dormant G
(n),m
i states. We

therefore seek an iterative process in the form y = base terms + dormant terms + new terms.
The base term comes from the contribution of the F

(1)
i states, since this remains unaltered

for all n. The contributing terms are therefore those we saw for n = 1 in section 2.1 in the
form

∑2
i=1 P

(
F

(1)
i

)
W

(
F

(1)
i

)
. Thus we have

base = y − py2

1 − c
. (8)

As dormant states and breeding states all come from the G
(n),m
i states, which all originate

from G
(1),1
i via the inductive development, we consider them together.

We start by writing down the terms contributed by the G
(1),1
i states (which are classed as

breeding states) and then build the inductive argument from there. These terms are of the form∑2
i=1 P

(
G

(1),1
i

)
W

(
G

(1),1
i

)
. Thus

breeding1 = y
(

1 − y

c

)
p + y

(y

c

) (
y

1 − c

)
p2. (9)
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We note here that by solving y = base + breeding1, we obtain equation (4) for the n = 1 case,
as we would expect.

Now, to proceed with our inductive argument we recall that the breeding states are those
labelled G

(n),n
i and the dormant states are those labelled G

(n),m
i with m < n. So new dormant

states and new breeding states are produced by the respective propagation and breeding of
G

(n−1),n−1
i states. The first dormant states appear for n = 2 and are labelled G

(2),1
i in

figures 3 and 5. We examine the G
(2),m
i contribution to the equation for y as an extension

of the breeding1 terms, and note which correspond to the dormant states, and which to the
breeding states.

By applying the rules outlined in section 3, we have for n = 2,

y = base + breeding1

(
1 +

p

2

(
1 − y

c

))
−

(p

2

)
P

(
G

(1),1
1

)
W

(
G

(1),1
1

)
, (10)

where

dormant2 = breeding1 −
(p

2

)
P

(
G

(1),1
1

)
W

(
G

(1),1
1

)
, (11)

and

breeding2 = p

2

(
1 − y

c

)
breeding1. (12)

By generalizing our extension from n = 1 to n = 2 and recalling that the dormant terms
remain in our equation for all higher n, we can write down the complete equation

y = base +
n−1∑
j=1

(
breedingj − y

pj+1

(j + 1)!

j+1∑
i=1

(
j

i − 1

)(−y

c

)i−1
)

+
p

n

(
1 − y

c

)
breedingn−1. (13)

Here the sum contains the terms from all the 2(n − 1) dormant G
(n),m
i states, and the last term

is the contribution from the breeding G
(n),n
i states. Furthermore, we have used the facts (see

figure 6)

P
(
G

(j),j

1

) = y
(

1 − y

c

)j

and W
(
G

(j),j

1

) = pj

j !
. (14)

In order to fully express our equation for y, we need to write explicitly, and generally, the
terms from breeding states. These, unlike the dormant state terms, do not accumulate. There
is one pair of breeding states at each order n, labelled G

(n),n
i ; the information on lower order

breeding states is included in the dormant state terms.
Again we refer to the breeding rules described in section 3 and figures 5 and 6. We

see that in the change from n to n + 1, the cell window has become one cell wider, and this
extra cell is accounted for by an extra agent in the main block. Therefore, using the two-
cell cluster method to write down state probabilities, the extra occupied cell manifests itself
as the inclusion of an extra factor P2(1, 1) = (1 − y/c). The transition probabilities obey
W

(
G

(n),n
i

) = (p/n)W
(
G

(n−1),n−1
i

)
, since one more agent is required to move with probability

p, and there is a 1/n probability that the agent is allowed to move due to the update order. We
can then write any breedingn terms by building inductively from the breeding1 terms (9), as
done for n = 2 in (12). We can say that for general n,

breedingn = y

(
1 − y

c

)n
pn

n!
+ y

(
y

c

)(
y

1 − c

)(
1 − y

c

)n−1
pn+1

n!
,

= y
pn

n!

n∑
i=1

(
n − 1
i − 1

)(−y

c

)i−1

×
(

1 − y

c
+

(
y

c

)(
py

1 − c

))
. (15)
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We now have all the necessary ingredients to write down our equation to solve for y in
the form

y = baseterms + dormantterms + breedingn. (16)

We divide this by y, and rearrange to get fn(y; c, p) = 0, which we then need to solve
for y. We have

fn(y; c, p) = p − py

1 − c
+

n∑
i=1

(−y

c

)i n∑
j=i

pj

j !

(
j − 1
i − 1

)(
1 − py

1 − c

)
, (17)

and we must solve fn(y; c, p) = 0 for the two-cell configuration probability y = P2(1, 0) for
the truncated process of order n. In fact, (17) has an n → ∞ limit

f (y; c, p) = −(1 − p) +
1

c − y

(
1 − py

1 − c

)(
c − y ep(1−y/c)

)
, (18)

and thus we solve f (y; c, p) = 0 for the (1, 0) probability of the full untruncated process.
This equation in general requires a numerical solution procedure. For robustness, we now
show that f (y; c, p) = 0 has a unique solution for y in the physical range [0, min(c, 1 − c)].

Firstly, we re-write (18) in terms of the new variable ŷ = c − y ∈ [max(0, 2c − 1), c] to
obtain f̂ (ŷ; c, p) = −(1 − p) + L(ŷ)g(ŷ), where

L(ŷ) =
(

1 − c − pc + pŷ

1 − c

)
and g(ŷ) =

∞∑
j=0

1

j !

(p

c

)j(
1 − p

j + 1

)
ŷj , (19)

and the power series for g arises from expansion of the exponential term. We then note
f̂ (0) = −pc(1 − p)/(1 − c) < 0 and f̂ (c) = p > 0 so that a sign change on the required
interval establishes the existence of at least one solution in the required range. To prove
uniqueness, we show that f̂ is monotone on [max(0, 2c − 1), c], by considering the derivative
f̂ ′(ŷ) = L′(ŷ)g(ŷ) + L(ŷ)g′(ŷ). We note that all coefficients in the power series of g are
positive, so g(ŷ) and all its derivatives are positive. The proof of monotonicity is completed
by noting that on the required range,

L(ŷ) � 1 − c − pc + p(2c − 1)

1 − c
= 1 − p, and L′(ŷ) = p/(1 − c), (20)

which are both positive quantities.
This procedure can also be used to show that the truncated models have unique solutions

for the two-cell configuration probability y of their respective equation fn(y; c, p) = 0 defined
by (17).

5. Steady state velocities and flow rates

Once we have solved for the two-cell configuration probability y, we may use it to find
macroscopic flow quantities. We begin by computing the probability distribution of contiguous
block lengths using local cluster theory. For example, the probability P2 of a block of length
2 is the probability that the lead agent has exactly one agent on the left before the next space,
i.e. P2 = P2(0, 1)P2(1, 1) = (y/c)(1 − y/c). This argument may be extended to give the
block length distribution

Pl =
(

y

c

)(
1 − y

c

)l−1

. (21)

Furthermore, note that the probability that an agent chosen at random is in a block of length
l is given by lPl/

∑∞
i=1 iPi ,= l(y/c)2(1 − y/c)l−1, since it is weighted towards the larger
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Figure 7. Comparison of flow-density relations arising from dynamical pair analysis of order n
truncated models and the full shuffle update scheme. Here p = 0.6. The left-hand plot: n = 1
truncation (· · · · · ·), n = 2 truncation (- - - -), and full model (——). The right-hand plot: the
logarithmic error plot showing convergence trend, where q∞ denotes the flow prediction of the full
model, and qn denotes the corresponding quantity for the order n truncation.

blocks. Note further that an agent chosen at random from a block of length l is equally likely
to be in each position with probability 1/l, and consequently the mean velocity v̂, which is
equal to the probability of motion in a given time step for a randomly chosen agent, is given
by

v̂ =
∞∑
l=1

l

(
y

c

)2(
1 − y

c

)l−1 l∑
k=1

1

l

pk

k!
, (22)

where pk/k! is the probability that at least k agents move from a given block. By interchanging
the order of summation and recognizing the tail of a geometric series, we obtain

v̂ =
(

y

c − y

)(
exp

(
p

c
(c − y)

)
− 1

)
, (23)

from which me may compute the flow rate q = cv̂. This result is equivalent to that found by
Wölki et al [8], using a car-oriented mean field (COMF) method which solves for the quantity
P0 := P2(1, 1) = 1 − y/c. The paper [8] also graphs out formula (23) and validates its
accuracy against numerical simulations.

In figure 7 we display the rapid convergence of the sequence of truncated models by
plotting flow-density curves based on (23) and the pair-configuration probability y that is the
zero of (17) for the truncated processes and (18) for the full process. However, all of these
curves are approximate since they are based on analysis that relies upon exact factorization
into two-cluster probabilities.

6. Conclusions and discussion

In this paper we have used the dynamical pair technique and a sequence of approximate models
to analyse the asymmetric exclusion process under shuffle update rules. For future work it
would be interesting to study the shuffle update model for vmax > 1 and compare with the
parallel and random sequential models. Furthermore, an extension into multi-lane traffic may
be worth pursuing, since as we have seen here, the shuffle update scheme guarantees collision
avoidance, even in higher dimensions.
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states extend by inserting an occupied cell in either position 0 or 2. W denotes the transition
probability that the highlighted cells of the new states become (1,1,0) in a single time step.

During the preparation of this manuscript, a preprint by Wölki et al came to our attention
(subsequently published [8]), which solves the same problem via a method which is oriented
around mobile agents (i.e., car-oriented mean field COMF) rather than static pairs of cells.
The key results (18), (23) in this paper are identically equivalent to those presented in [8], so
further discussion should be focused on the relative merits of the two approaches.

Both the COMF and the site-oriented mean field (SOMF) approach adopted here have
spatial independence approximations from local cluster theory [12] at their core. However,
the macroscopic velocities and flow rates that the theory predicts are in close agreement with
numerical simulations. Moreover, one may show that the results are exact for the order n = 1
truncation model (equivalent to parallel update [11]) and for p = 1 and c � 1/2 in the full
shuffle update model [8]. In the latter case, agents separate into singletons for sufficiently
large t, and subsequently move forward at vmax = 1.

The SOMF method is relatively complicated compared to [8], but it has the advantage that
we may probe the spatial independence assumption further by attempting an analysis of the
dynamics of larger clusters. To cover this in detail would be the subject of another paper, but
here we give a brief overview of how it may be achieved with three-cell clusters, for which there
are eight possible states. However, by using symmetry and conservation principles, one may
show that it is sufficient to analyse three independent three-cell configuration probabilities,
namely y1 = P3(1, 0, 0), y2 = P3(0, 1, 0) and y3 = P3(1, 1, 0). From these we may also
define conditional three-cell configuration probabilities, as in [11, 12].

The tools are now in place to repeat the process from earlier in this paper, although now
we should expect the details to be more complicated. Here we focus on the n = 2 truncated
model for simplicity (the n = 1 model being trivial since then the dynamical pair analysis is
exact). Now we must catalogue all of the ways in which the configurations (1, 0, 0), (0, 1, 0)

and (1, 1, 0) can be produced in a single time step, and consequently we must produce three
figures each of which is analogous to figure 3. The chief observation is that the left-hand
column states in these new pictures can be derived from figure 3 via a new hereditary process.
For example, figure 8 lists states from which the (1, 1, 0) three-cell cluster may be obtained in
a single time step and how these states breed from the two-cell cluster analysis of figure 3. We
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have also obtained the pictures for (1, 0, 0) and (0, 1, 0) via similar genetic principles (details
not presented here), and it is intriguing to speculate whether the inductive process could also
be carried out to generalize these diagrams to increased truncation order n.

For n = 2, the (1, 0, 0), (0, 1, 0) and (1, 1, 0) balances may be arranged to yield three
simultaneous equations for y1, y2, y3. For example, the y1 balance is given by

0 = −p
y2

1

1 − c − y2 − y3

(
1 − p

y2

y2 + y3
− p2

2

y2
3

(y2 + y3)(c − y2 − y3)

)

+

(
1 − y1

y2 + y3

)(
p(1 − p)y2 +

p2

2
(1 − p)

y2
3

c − y2 − y3

)
, (24)

but we omit the details of the others for the sake of brevity. Having solved these equations,
we may obtain a three-cell cluster approximation for the two-cell configuration probability in
the form y(3) := P2(1, 0) = P3(1, 0, 1) + P3(1, 0, 0) which equates to y2 + y3, and compare
this with the prediction y(2) of the two-cell cluster approximation, which is the zero of (6).
Figure 9 shows that there is very little discrepancy between the two approaches over a wide
range of parameter values, indicating that the spatial independence assumption is a good
approximation and that the two-cell cluster theory prediction y(2) is accurate. Future work
should focus on establishing the hereditary relations which permit this approach to be extended
to larger cluster sizes and higher order model truncations.
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[7] Lunt G 2001 Cellular automata models for flows without momentum Master’s Thesis University of Bristol
[8] Wölki M, Schadschneider A and Schreckenberg M 2006 Asymmetric exclusion processes with shuffled

dynamics J. Phys. A: Math. Gen. 39 33–44
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